DOI:10.3969/j. issn. 1671-9638. 2017. 07. 003

·论著·

内科重症监护病房铜绿假单胞菌医院感染同源性及临床特点

张 萍^{1,2},刘红梅³,陈 愉¹,赵思宏¹,李玉荣²,宋争昌⁴,赵 立¹ (1中国医科大学附属盛京医院,辽宁 沈阳 110004;2沈阳市第四人民医院,辽宁 沈阳 110031;3朝阳市第四人民医院, 辽宁 朝阳 122000;4泰山医学院附属医院,山东 泰山 271000)

[摘 要] 目的 研究内科重症监护病房(MICU)铜绿假单胞菌(PA)医院感染的同源性及临床特点,以指导临床 预防 PA 传播,提高治疗效果。方法 对某院 2014 年 1—12 月 MICU 发生医院感染的 25 例患者分离的 55 株 PA 进行脉冲场凝胶电泳(PFGE)同源性分析及聚类分析,对其临床特点、耐药性及其传播特点进行分析。结果 共调查 25 例患者,平均年龄为(69.62±2.13)岁,平均住院时间(49.34±3.18)d;在分离出 PA 之前,84.00%的患者应用广谱抗菌药物>2 周,76.00%的患者人住过 MICU,52.00%的患者使用呼吸机辅助通气。55 株 PA 主要以 A、F、H、K、N、V、W 型为主要的流行菌株;感染 A 型、F 型、H 型及 K 型菌株的患者在各自住院时间上均存在交叉;有4 例患者不同时期分离菌株的 PFGE 图谱分析显示不同菌型; PA 对头孢他啶(72.73%)、哌拉西林/他唑巴坦(70.91%)、亚胺培南(70.91%)耐药率高,对阿米卡星耐药率最低(25.45%)。结论 医疗机构应加强抗菌药物管理,加强医院感染控制措施,防止多重耐药和泛耐药细菌在医院内的播散。

[关 键 词] 重症监护病房;铜绿假单胞菌;脉冲场凝胶电泳;同源性;传播特点;临床分析 [中图分类号] R378.99⁺1 [文献标识码] A [文章编号] 1671-9638(2017)07-0600-06

Homology and clinical characteristics of healthcare-associated infection with *Pseudomonas aeruginosa* in medical intensive care unit

ZHANG Ping^{1,2}, LIU Hong-mei³, CHEN Yu¹, ZHAO Si-hong¹, LI Yu-rong², SONG Zheng-chang⁴, ZHAO Li¹ (1 Shengjing Hospital of China Medical University, Shenyang 110004, China; 2 The Fourth People's Hospital of Shenyang, Shenyang 110031, China; 3 The Fourth People's Hospital of Chaoyang, Chaoyang 122000, China; 4 Affiliated Hospital of Taishan Medical University, Taishan 271000, China)

[Abstract] Objective To study the homology and clinical characteristics of healthcare-associated infection (HAI) due to *Pseudomonas aeruginosa* (*P. aeruginosa*) in medical intensive care unit (MICU), so as to guide the clinical prevention of *P. aeruginosa* transmission and improve therapeutic effect. Methods 55 *P. aeruginosa* strains isolated from 25 patients with HAI in the MICU of a hospital in January-December 2014 were performed pulsed-field gel electrophoresis (PFGE) homology analysis and clustering analysis, clinical characteristics, antimicrobial resistance, and transmission characteristics were analyzed. Results A total of 25 patients were investigated, with an average age of (69. 62 ± 2. 13) years, mean hospital stay (49. 34 ± 3. 18) days; prior to the isolation of *P. aeruginosa*, 84. 00% of patients were treated with broad-spectrum antimicrobial agents for >2 weeks, 76. 00% of patients had been admitted to MICU, and 52. 00% had a ventilator-assisted ventilation. 55 strains of *P. aeruginosa* were mainly A, F, H, K, N, V, and W, which were the main epidemic strains; patients infected with A, F, H and K strains all had cross in their hospital stay; PFGE profiles of isolates from 4 patients during different periods showed different strain patterns; resistance rates of *P. aeruginosa* to ceftazidime (72. 73%), piperacillin/tazobactam (70. 91%), and imipenem (70. 91%) were all high, resistance rate to amikacin was the lowest (25. 45%).

[[]收稿日期] 2016-07-24

[[]作者简介] 张萍(1987-),女(汉族),辽宁省铁岭市人,医师,主要从事老年患者肺部感染性疾病的防治研究。

[[]通信作者] 陈愉 E-mail:chenyusy@hotmail.com

Conclusion Management of antimicrobial agents should be strengthened in medical institutions, HAI control measures should be strengthened, so as to prevent the transmission of multidrug-resistant and extensively drug-resistant bacteria in hospitals.

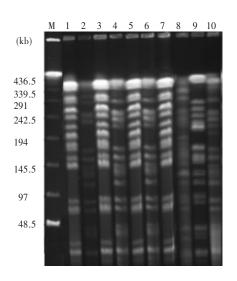
[Key words] intensive care unit; *Pseudomonas aeruginosa*; pulsed-field gel electrophoresis; homology; spread characteristic; clinical analysis

[Chin J Infect Control, 2017, 16(7):600 - 605]

铜绿假单胞菌(Pseudomonas aeruginosa, PA) 属于非发酵菌类假单胞菌属。广泛分布于自然界及 人和动物体表、肠道中,是一种常见的条件致病菌, 尤其在医院环境中 PA 检出率很高。由于 PA 具有 易定植、易变异、易耐药等特征,防治多重耐药铜绿 假单胞菌(MDR-PA)感染已成为医院感染监测的 重点。根据美国医院流行病学协会[1]推荐的常见病 原菌分型鉴定方法,PA 推荐分型是使用脉冲场凝 胶电泳(PFGE),此技术具有很高的特异性和分辨 力,能够较好的反映流行病学相关性,是公认的医院 感染调查最好的分型方法。本研究对某院 2014 年 1-12 月内科重症监护病房(MICU)发生医院感染 的 25 例患者分离出的 55 株 PA 进行 PFGE 同源性 分析及聚类分析,对其临床特点、耐药性及传播特点 进行分析,以指导临床预防 PA 的传播,提高治疗 效果。

1 资料与方法

- 1.1 资料来源 选取 2014年1—12月某院 MICU 发生医院感染的 25 例患者,共分离 55 株 PA,其中 52 株来自痰,3 株来自导管引流液。收集并分析 25 例 MICU 患者的临床资料。医院感染诊断标准依据卫生部 2001 年颁发的《医院感染诊断标准(试行)》^[2]。
- 1.2 试剂和仪器 蛋白酶 K(日本 TaKaRa 公司), Spel 限制性内切酶(美国 Promega 公司),λMarker、 低熔点琼脂糖、CHEF-Mapper XA 型脉冲电泳仪、 GIS-700D 数码图像扫描分析系统(美国 Bio-Rad 公司),低温高速台式离心机(美国科峻公司)。
- 1.3 PFGE 检测 将细菌接种于 LB 肉汤振荡培养过夜,12 000 r/min 离心 1 min; CSB 缓冲液 1 mL 洗涤后,8 000 r/min 离心 5 min,弃去上清;应用 EC 缓冲液调整菌液浊度,用 2%的低熔点琼脂糖迅速混匀加入模具,用蛋白酶 K 进行裂解;加入限制性内切酶 SpeI,37 ℃、24 h 进行酶切;酶切后小胶块包埋于 1%琼脂糖凝胶中,使用 CHEF Mapper XA 系


统进行电泳;将凝胶置于 EB 溶液中染色,应用紫外透射仪进行拍照。结果参照 Tenover 等[3] 方法,如 PFGE 图谱一致,说明为相同菌株;1~3 条带不同说明菌株间有相近关系,只有单基因的改变;4~6条带不同说明菌株间可能有相近关系,有 2 个基因的改变;6条及以上条带不同,说明有 3 个或更多基因的变化,视为无相关性。

- 1.4 聚类分析 根据 PFGE 电泳的基因图谱将条带转换为二进制数据,其中"1"代表有,"0"代表无。将数据导入 SPSS 16.0 统计软件中,应用谱系聚类分析绘制树状图。
- 1.5 药敏试验 采用美国临床实验室标准化协会 (CLSI)2014 年版推荐的纸片扩散(K-B)法测定 55 株 PA 对 9 种抗菌药物的耐药率。敏感性判定根据 CLSI 的标准进行判读。

2 结果

- 2.1 一般情况 共调查 25 例患者,其中男性 18 例,女性 7 例;平均年龄为(69.62 ± 2.13)岁,平均住院时间(49.34 ± 3.18)d;既往有高血压、糖尿病及冠心病等不同基础疾病的患者 19 例。
- 2.2 临床资料 20 例患者有发热,体温为37.4~40.0 ℃。23 例患者伴有咳嗽、咳痰,其中1 例患者痰中带血,所有患者肺部听诊均为呼吸音粗或散在干湿啰音。实验室检查结果显示 18 例患者白细胞升高,11 例患者丙氨酸氨基转移酶升高,11 例患者有低蛋白血症。所有患者胸部放射线检查均提示肺部多叶段炎症。患者在分离 PA 之前,均使用过广谱抗菌药物,在分离 PA 之后,根据药敏结果选用抗菌药物治疗,同时还给予化痰及调节免疫等治疗。经系统诊治,3 例患者死亡,年龄均>60 岁,既往均有基础疾病。18 例患者病情好转出院,2 例患者未待病情稳定自行出院,2 例患者病情相对平稳,仍呼吸机辅助通气继续住院治疗。
- 2.3 危险因素 25 例患者中 19 例(76.00%)患者 既往有基础疾病;17 例(68.00%)患者年龄>60 岁;

既往有手术史患者 12 例(48.00%),其中气管切开术后患者 6 例。在分离出 PA 之前,21 例(84.00%)患者应用广谱抗菌药物 2 周以上;19 例(76.00%)患者入住过 MICU;13 例(52.00%)患者行呼吸机辅助通气;12 例(48.00%)患者使用呼吸机超过 1 周;11 例(44.00%)患者有低蛋白血症;7 例(28.00%)患者留置导尿管;4 例(16.00%)患者应用糖皮质激素。

M: Marker; 1、3、5、7 为 A 型菌株; 2、4、6 为 F 型菌株; 8 为 H 型菌株; 9 为 K 型菌株; 10 为 V 型菌株

图 1 铜绿假单胞菌 PFGE 图谱

Figure 1 PFGE map of P. aeruginosa

2.4 PFGE 电泳结果 55 株 PA 染色体经酶切后, 产生 15~23 条 DNA 片段, 片段大小约为 20~ 420 kb, 见图 1。聚类分析结果可见, PA 为 A~W 共 23 型, 其中 A、F、H、K、N、V、W 型为主要的流行菌 株; 其中 A 型 6 株, 分 2 个亚型(48 号、51 号、52 号、 54 号及 55 号为同一亚型), F型 5 株, H型 4 株, K型 7 株, N型 3 株, V型 7 株; W型 3 株, 分 2 个亚型 (28 号和 30 号为同一亚型)。见图 2。

2.5 药敏结果 55 株 PA 对头孢他啶的耐药率为72.73%、对哌拉西林/他唑巴坦、亚胺培南的耐药率均为70.91%;对阿米卡星的耐药率最低,为25.45%。对其他常见抗菌药物的耐药情况见表1。

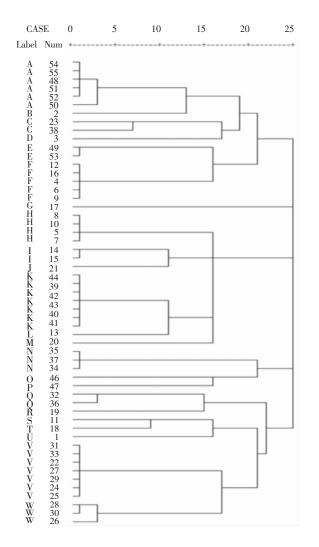


图 2 铜绿假单胞菌 PFGE 的聚类分析

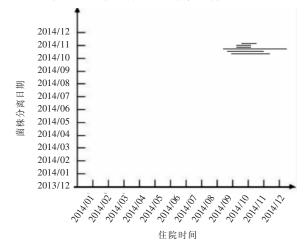
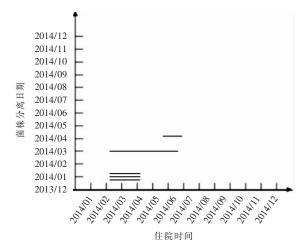

Figure 2 Clustering analysis on PFGE of *P. aeruginosa*

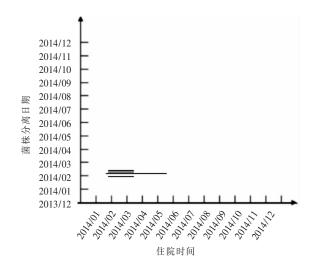
表 1 55 株 PA 对 9 种常用抗菌药物的耐药情况

Table 1 Resistance of 55 strains of *P. aeruginosa* to 9 commonly used antimicrobial agents


抗菌药物	耐药菌株	耐药率(%)	
哌拉西林/他唑巴坦	39	70.91	
头孢他啶	40	72.73	
头孢吡肟	23	41.82	
亚胺培南	39	70.91	
妥布霉素	16	29.09	
庆大霉素	15	27.27	
阿米卡星	14	25.45	
环丙沙星	27	49.09	
左氧氟沙星	25	45.45	

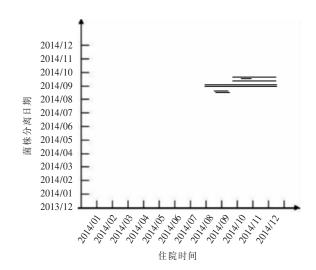
2.6 传播特点 25 例患者分离的 55 株 PA 主要包括 A、F、H、K、N、V、W 7 种基因型。 A 型菌株中 5 例患者在住院时间上存在交叉,其中 51 号、52 号为同一患者分离的菌株,见图 3。F 型菌株中 3 例患者在住院时间上存在交叉,其中 4 号、6 号、9 号为同一患者分离的菌株,见图 4。H 型菌株中 2 例患者在住院时间上存在交叉,其中 5 号、8 号、10 号为同一患者先后分离的菌株,见图 5。K 型菌株中 5 例患者在住院时间上存在交叉,其中 41 号与 42 号、43 号与 44 号为同一患者分离菌株,见图 6。N 型菌株、V 型菌、W 型菌为同一患者分离菌株。

注:从上至下依次为 48、51、52、50、54、55 号菌株,其中 51、52 号 菌株来源于同一患者


图 3 A型 PA 分离日期及来源患者住院时间分布图 Figure 3 Distribution of isolation date of type A P. aeruginosa and hospitalization time of source patients

注:从上至下依次为 12、16、4、6、9 号菌株,其中 4、6、9 号菌株来源于同一患者

图 4 F型 PA 分离日期及来源患者住院时间分布图


Figure 4 Distribution of isolation date of type F *P. aerugi-nosa* and hospitalization time of source patients

注:从上至下依次为 8、10、7、5 号菌株,其中 5、8、10 号菌株来源于同一患者

图 5 H型 PA 分离日期及来源患者住院时间分布图

Figure 5 Distribution of isolation date of type H P. aeruginosa and hospitalization time of source patients

注:从上至下依次为 41、45、42、43、44、40、39 号菌株,其中 41 号与 42 号、43 号与 44 号分别来源于同一患者

图 6 K型 PA 分离日期及来源患者住院时间分布图 Figure 6 Distribution of isolation date of type K P. aerugi-

nosa and hospitalization time of source patients

3 讨论

PA是医院感染最常见的革兰阴性条件致病菌之一。2013年我国 CHINET 细菌耐药性监测^[4]数据显示,PA在临床分离的不发酵糖革兰阴性杆菌中占第2位。全球性细菌耐药监测 SENTRY 连续多年监测数据也显示,PA是引起医院获得性肺炎和呼吸机相关肺炎最多见的革兰阴性杆菌^[5]。近年

来,随着各种抗菌药物在临床的广泛使用,出现了多重耐药 PA,甚至全耐药 PA。MDR-PA 已经成为各地区临床治疗的棘手问题。

本文研究的 25 例 PA 医院感染患者,平均年龄为(69.62 ± 2.13)岁,平均住院时间为(49.34 ± 3.18)d,76.00%的患者有基础疾病。在分离出 PA 之前,19 例患者入住过 MICU;84.00%的患者应用广谱抗菌药物大于 2 周;13 例患者病情危重需行呼吸机治疗,其中 7 例为气管插管,6 例为气管切开术后,患者气道开放,肺损伤加重,更容易感染病原菌。4 例患者使用过糖皮质激素,44.00%的患者为低蛋白血症;病情危重患者机体免疫力低下,糖皮质激素的应用,也降低了机体免疫力,使其极易发生医院感染,以上结果与 Falagas 等[6] 报道相一致。虽经积极治疗,仍有 3 例患者死亡,年龄均大于 60 岁,既往均有基础疾病。

本研究的药敏试验结果显示,PA 对头孢他啶、哌拉西林/他唑巴坦、亚胺培南呈高耐药性,耐药率均达 70%以上,高于杨旭辉等^[7]的报道,也高于2011年我国 CHINET 铜绿假单胞菌耐药监测^[8]报道 PA 的耐药率。分析其原因考虑一是由于 25 例患者来自 MICU,既往基础疾病重,需要长期应用广谱抗菌药物,并且存在留置多种导管、机械通气、人工吸痰等因素,使感染耐药菌的机会大大增加^[9-11];二是可能与医院近年来广泛使用该类药物有关,所以近期应该限制性使用该类药物,待其敏感性恢复。2010年我国 CHINET 铜绿假单胞菌耐药监测报道不同临床科室分离的 PA 耐药率不同,ICU 病房分离 PA 耐药率高于其他科室^[12]。PA 临床感染逐渐增多,其对碳青霉烯类抗生素耐药率亦有逐年上升的趋势^[13]。

此外,本研究也发现 PA 对一些抗菌药物较敏感,如喹诺酮类(环丙沙星和左氧氟沙星)、β-内酰胺类(头孢吡肟)、氨基糖苷类(阿米卡星、庆大霉素和妥布霉素),其中阿米卡星耐药率最低。多个全球性耐药监测,如 SENTRY、SMART 及 SERNIR 等数据也显示,PA 对阿米卡星耐药率最低,原因可能是该类药物对多数氨基糖苷类钝化酶稳定,并且在临床中的用量较其他类药物少[5,14-15]。临床应依照药敏试验结果,选用抗菌活性强的药物,对严重感染者需联合用药,防止或减慢耐药菌株的产生[16]。轮换使用抗菌药物可以分散抗菌药物选择性压力,选择耐药率低的抗菌药物进行轮换,亦有助于恢复细菌的耐药性[17]。

本文 PFGE 图谱及聚类分析树图显示,55 株 PA以A、F、H、K、N、V、W基因型为主要流行株, 说明 MICU 中存在 PA 的克隆传播。由传播特点 可见,A型、F型、H型及K型菌株在各自住院时间 上均存在交叉,表明出现了同一医疗单元即同病房 的同型菌株的克隆传播,通过医疗器械及治疗处置 时造成交叉感染的可能性大。另外,有4例患者不 同时期分离菌株的 PFGE 图谱分析显示不同菌型, 43号、44号、47号、48号为同一患者感染菌株检出 K型、P型及A型,药敏试验结果提示对左氧氟沙 星由敏感转为耐药;23 号、26 号、28 号、30 号、38 号 为同一患者感染菌株检出 C 型和 W 型,药敏试验 结果提示对左氧氟沙星、环丙沙星由敏感转为耐药; 14号、16号为同一患者感染菌株检出 I 型和 F 型, 为全耐药菌型;51号、52号、53号为同一患者感染 菌株检出 A 型和 E 型,药敏试验结果提示对头孢吡 肟及阿米卡星由敏感转为耐药,这与王继东等[18]报 道患者 PA 医院感染存在多克隆感染或反复不同株 感染相类似。由于广谱抗菌药物在临床上广泛使 用,容易导致出现 MDR-PA,甚至泛耐药铜绿假单 胞菌(PDR-PA)。PDR-PA 大多分离来自 ICU,且 多为克隆传播[11],易引起医院感染暴发流行。

本文通过 PFGE 方法分析 PA 菌株之间的亲缘 关系,监测是否有克隆播散,可追踪暴发流行来源及 传播途径,有效控制医院感染。因此,医疗机构应加 强细菌耐药监测,关注我国细菌耐药性的发展趋势, 加强抗菌药物管理,加强医院感染控制措施,防止多 重耐药和泛耐药细菌在医院内的播散。

[参考文献]

- [1] Tenover FC, Arbeit RD, Goering RV. How to select and interpret molecular strain typing methods for epidemiological studies of bacterial infections: a review for healthcare epidemiologists. Molecular Typing Working Group of the Society for Healthcare Epidemiology of America[J]. Infect Control Hosp Epidemiol, 1997, 18(6): 426 439.
- [2] 中华人民共和国卫生部. 医院感染诊断标准(试行)[S]. 北京, 2001.
- [3] Tenover FC, Arbeit RD, Goering RV, et al. Interpreting chromosomal DNA restriction patterns produced by pulsed-field gel electrophoresis: criteria for bacterial strain typing [J]. J Clin Microbiol, 1995, 33(9): 2233 2239.
- [4] 胡付品,朱德妹,汪复,等. 2013 年中国 CHINET 细菌耐药性监测[J]. 中国感染与化疗杂志, 2014, 14(5):365-374.
- [5] Jones RN. Microbial etiologies of hospital-acquired bacterial

- pneumonia and ventilator-associated bacterial pneumonia [J]. Clin Infect Dis, 2010, 51 (Suppl 1): S 81 S 87.
- [6] Falagas ME, Kopterides P. Risk factors for the isolation of multi-drug-resistant Acinetobacter baumannii and Pseudomonas aeruginosa: a systematic review of the literature[J]. J Hosp Infect, 2006, 64(1): 7-15.
- [7] 杨旭辉,赵勇. 创伤外科 62 株铜绿假单胞菌体外抗菌药物敏感性分析[J]. 检验医学与临床, 2012, 9(15):1913 1914.
- [8] 施晓群, 孙景勇, 倪语星, 等. 2011 年中国 CHINET 铜绿假 单胞菌耐药性监测[J]. 中国感染与化疗杂志, 2013, 13(3): 218-221.
- [9] Master RN, Clark RB, Karlowsky JA, et al. Analysis of resistance, cross-resistance and antimicrobial combinations for *Pseudomonas aeruginosa* isolates from 1997 to 2009[J]. Int J Antimicrob Agents, 2011, 38(4): 291 295.
- [10] Lee K, Kim MN, Kim JS, et al. Further increases in carbapenem-, amikacin-, and fluoroquinolone-resistant isolates of *Acinetobacter spp.* and *P. aeruginosa* in Korea; KONSAR study 2009[I]. Yonsei Med J, 2011, 52(5): 793-802.
- [11] Harris AD, Johnson JK, Thom KA, et al. Risk factors for development of intestinal colonization with imipenem-resistant *Pseudomonas aeruginosa* in the intensive care unit setting[J]. Infect Control Hosp Epidemiol, 2011, 32(7): 719 722.
- [12] 张祎博,倪语星,孙景勇,等. 2010年中国 CHINET 铜绿假 单胞菌耐药性监测[J].中国感染与化疗杂志,2012,12(3):

- 161 166.
- [13] 许宏涛, 陈东科, 俞云松, 等. 多重耐药铜绿假单胞菌产 β-内 酰胺酶耐药机制研究[J]. 中华医院感染学杂志, 2005, 15 (1):20-22.
- [14] Liu YM, Chen YS, Toh HS, et al. In vitro susceptibilities of non-Enterobacteriaceae isolate from patients with intra-abdominal infections in the Asia-Pacific region from 2003 to 2010; results from the Study for Monitoring Antimicrobial Resistance Trends(SMART) [J]. Int J Antimicrob Agents, 2012, 40 (Suppl); S11-S17.
- [15] Xiao M, Wang Y, Yang QW, et al. Antimicrobial susceptibility of *Pseudomonas aeruginosa* in China: a review of two multicentre surveillance programmes, and application of revised CLSI susceptibility breakpoints[J]. Int J Antimicrob Agents, 2012, 40(5): 445-449.
- [16] 张鸿,申建维,孙秀琴,等. 医院感染铜绿假单胞菌的耐药性变迁分析[J]. 中华医院感染学杂志, 2013, 23(2):449-451.
- [17] 展冠军, 詹莹, 邵华. 铜绿假单胞菌对抗菌药物耐药性研究 [J]. 中华医院感染学杂志, 2014, 24(20):5025-5026, 5032.
- [18] 王继东,金辉,糜祖煌,等. 医院感染铜绿假单胞菌菌株亲缘性分析[J]. 中华医院感染学杂志,2006,16(12):1337-1339.

(本文编辑:刘思娣)