DOI:10.12138/j.issn.1671-9638.20195331

·论著·

某院耐碳青霉烯类肠杆菌科细菌耐药基因分析

周仕丹¹,刘春来¹,杨润时²,贾 玲²,李 妍¹,曹海燕¹,晏辉钧³,孙 坚²,庄志辉¹ (1. 惠州市中心人民医院,广东 惠州 516001; 2. 华南农业大学,广东 广州 510642; 3. 中山大学中山医学院微生物学教 研室 中山大学热带病防治研究教育部重点实验室,广东 广州 510080)

[摘 要]目的 研究某院耐碳青霉烯类肠杆菌科细菌(CRE)在细菌耐药方面的分子流行病学特征,为CRE的防控提供依据。方法 收集某院 2013—2017年细菌室保存的CRE,对其进行多位点序列分型(MLST)、药敏试验、全基因序列测定,选取部分CRE中携带的碳青霉烯耐药基因进行基因环境分析。结果 共收集 62株 CRE,成功复活 51株;其中耐碳青霉烯类肺炎克雷伯菌(CRKP)30株,耐碳青霉烯类大肠埃希菌(CREC)9株,耐碳青霉烯类阴沟肠杆菌(CRECL)6株,耐碳青霉烯类其他肠杆菌6株。CRKP MLST主要包括3株 ST147、2株 ST11;CREC MLST主要包括3株 ST167;CRECL MLST主要包括3株 ST93、2株 ST88。51株 CRE 对氨苄西林、头孢噻肟的耐药率最高,均为100%。耐碳青霉烯类耐药基因分布:1株携带 bla_{KPC2},14株携带 bla_{IMP4},18株携带 bla_{NDM5},2株携带 bla_{NDM5},10株携带 bla_{OXA-1},10株携带 bla_{OXA-10},2株携带 bla_{OXA-23},2株携带 bla_{NDM5},2株携带 bla_{NDM5},bla_{IMP4},不同菌种的基因环境,发现几种耐药基因各自的基因环境都与已报道的基因环境相似,无明显的菌种间差异性。结论 耐药基因通过水平传播能稳定存在于不同的CRE 菌株中,对医院感染防控造成一定的威胁。

[关 键 词] 耐碳青霉烯类肠杆菌科细菌;β-内酰胺酶;多位点序列分型;基因环境;医院感染 [中图分类号] R378.2

Resistance genes of carbapenem-resistant Enterobacteriaceae in a hospital

ZHOU Shi-dan¹, LIU Chun-lai¹, YANG Run-shi², JIA Ling², LI Yan¹, CAO Hai-yan¹, YAN Hui-jun³, SUN Jian², ZHUANG Zhi-hui¹(1. Huizhou Municipal Central Hospital, Huizhou 516001, China; 2. South China Agricultural University, Guangzhou 510642, China; 3. Department of Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Key Laboratory of Tropical Disease Control, Ministry of Education, Guangzhou 510080, China)

[Abstract] Objective To study the molecular epidemiological characteristics of drug resistance of carbapenem-resistant Enterobacteriaceae (CRE) in a hospital, and provide evidence for the prevention and control of CRE. Methods

CRE stored in the bacterial laboratory of a hospital from 2013 to 2017 were collected and performed multilocus sequence typing (MLST), antimicrobial susceptibility testing as well as whole-genome sequencing, carbapenem resistance genes carried in some CRE strains were conducted gene environment analysis. **Results** A total of 62 strains of CRE were collected and 51 were successfully revived, including 30 strains of carbapenem-resistant *Klebsiella pneumoniae* (CRKP), 9 strains of carbapenem-resistant *Escherichia coli* (CREC), 6 strains of carbapenem-resistant *Enterobacter cloacae* (CRECL), and 6 strains of other CRE. CRKP MLST mainly included 3 ST147 strains and 2 ST11 strains; CREC MLST mainly included 3 ST167 strains; CRECL MLST mainly included 3 ST93 strains and 2 ST88 strains. 51 strains of CRE showed the highest resistance to ampicillin and cefotaxime, all were 100%. Distribution of carbapenem resistance genes was follows: 1, 14, 18, 22, 2, 10, 10, 2, and 2 strains carried *bla*_{KPC2},

[收稿日期] 2019-04-29

[基金项目] 惠州市科技计划项目(2017Y002)

[作者简介] 周仕丹(1985-),女(汉族),广东省汕头市人,主治医师,主要从事医院感染管理与传染病防控的研究。

[通信作者] 刘春来 E-mail:841215419@qq.com; 晏辉钧 E-mail:yanhj@mail.sysu.edu.cn

 $bla_{\rm IMP-4}$, $bla_{\rm NDM-1}$, $bla_{\rm NDM-9}$, $bla_{\rm OXA-1}$, $bla_{\rm OXA-10}$, $bla_{\rm OXA-23}$, and $bla_{\rm OXA-66}$ respectively. Genetic environment of $bla_{\rm NDM-5}$, $bla_{\rm NDM-9}$, and $bla_{\rm IMP-4}$ in different strains was analyzed, it was found that the genetic environment of several drug-resistant genes was similar to the previously reported genetic environment, there was no significant difference among strains. **Conclusion** Drug resistance genes can be stable in different CRE strains through horizon-tal transmission, which poses a threat to the prevention and control of healthcare-associated infection.

[Key words] carbapenem-resistant Enterobacteriaceae; β-lactamase; multilocus sequence typing; genetic environment; healthcare-associated infection

近十年来,耐碳青霉烯类肠杆菌科细菌(carbapenem-resistant Enterobacteriaceae, CRE)是全 球密切关注的耐药菌之一。2017年,世界卫生组织 (WHO)^[1]发布首份对抗菌药物耐药的"重点病原 体"清单,列出对人类健康构成最大威胁的 12 种细 菌,并根据这些细菌对新型抗菌药物的迫切需求程 度分成三个类别:极为重要、十分重要和中等重要, 将 CRE 列入"极为重要"级别(1 类重点)。CRE 感 染尚无有效的治疗药物,且病死率极高,给感染性疾 病的治疗带来了严峻挑战。近些年医院 CRE 的分 离率有所上升,故通过研究某院 CRE 的分子流行病 学特点、感染危险因素等内容,为临床医生精准治疗 CRE 感染患者和医院感染管理部门防控 CRE 在医 院内的播散提供参考依据。现将结果报告如下。

1 材料与方法

1.1 菌株来源 收集某院 2013—2017 年细菌室 -80℃医用低温箱保存的 62 株 CRE(所有菌株的 亚胺培南最小抑菌浓度≥4 μg/mL),标本来自痰、 尿、血、伤口分泌物等。

1.2 主要试剂 Taq DNA 聚合酶、DNA 分子量标 准、dNTP Mixture 购于大连市宝生物工程有限公 司,细菌基因组 DNA 提取试剂盒购于天根生华科 技有限公司,西班牙琼脂糖购于北京市沃比森科技 有限公司,6-磷酸葡萄糖购于广州市普博欣生物有 限公司,无水乙醇、氯化钠、浓盐酸、氢氧化钠购于广 州化学试剂厂。

1.3 主要设备 Vitek 2 Compact 全自动微生物鉴 定及药敏分析仪、AST-GN13 药敏卡购于法国梅里 埃公司,超净工作台购于苏州市净化设备有限公司, DNP-9272 电热恒温培养箱购于上海市申贤恒温设 备厂,THZ 恒温震荡箱购于广州市神化生物技术有 限公司,Elix100 超纯水装置购于美国 Millipore 公司,DYCP-31C 型电泳槽购于北京市六一仪器厂,基 质辅助激光解吸电离飞行时间质谱仪购于日本岛津 公司,台式高速离心机、微量移液器、电动移液枪购 于德国 Eppendorf 公司,脉冲场凝胶电泳、电泳凝胶 成像系统、PCR 扩增仪购于美国 BIO-RAD 公司。 1.4 试验方法

1.4.1 菌株的初次分离、鉴定及保存 按照《全国 检验技术操作规程(第4版)》^[2]的要求进行接种、分 离、培养,选择有临床意义的细菌,用法国梅里埃 Vitek 2 Compact 全自动微生物鉴定及药敏分析仪 进行细菌鉴定,使用 AST-GN13 药敏卡进行 MIC 检测。将血平板分纯后的菌株,用脱脂棉签刮洗下 来,转移至脱脂牛奶保存液,置于医用低温箱-80℃ 保存。

1.4.2 菌株的复活、再次鉴定 将-80℃保存的 菌株接种到4mLLB肉汤培养基,于37℃摇床中 过夜培养;用接种环蘸取菌液,于美罗培南浓度为 1µg/mL的麦康凯琼脂培养基上划线,经37℃恒温 培养16~20h。选用基质辅助激光解吸电离飞行 时间质谱(简称 MALDI-TOF MS)技术和16S rDNA方法对分离的CRE进行菌株鉴定。

1.4.3 药敏试验 选取 10 种受试的抗菌药物,根 据美国临床实验室标准化协会(CLSI) M100—S28 (2018)^[3]中药物配置方法标准的指导,选取溶剂进 行配制、稀释,依照 CLSI M100—S28(2018)中琼脂 稀释法测定菌株的最小抑菌浓度(MIC)。药敏试验 的判断标准,除替加环素的折点(S $\leq 1 \mu L/mL$,R> $2 \mu L/mL$)、粘菌素的折点(S $\leq 2 \mu L/mL$,R>2 $\mu L/$ mL)是参照欧洲药敏试验委员会(EUCAST)^[4]推 荐外,其余抗菌药物的折点参照 CLSI M100—S28 (2018)文件的要求。见表 1。

表	1 CRI	E药敏试	验的判断标准	$(\mu L/mL)$
Table 1	Criteria	for CRE	susceptibility	testing($\mu L/mL$)

抗菌药物	敏感(S)	中介(M)	耐药(R)
头孢噻肟(CTX)	≤1	2	≥4
美罗培南(MEM)	≤1	2	≥4
阿米卡星(AMK)	≪16	32	≥64
庆大霉素(GEN)	≪4	8	≥16
氨苄西林(AMP)	$\leqslant 8$	16	≥32
替加环素(TIG)	≤1	2	>2
环丙沙星(CIP)	≤1	2	≥4
粘菌素(CS)	≪2	-	>2
磷霉素(FOS)	≪64	128	≥256
复方磺胺甲恶唑(SXT)	≤2/38	-	≥4/76

1.4.4 全基因序列测定 用细菌基因组 DNA 提 取试剂盒提取待测细菌基因组。将所提基因组 DNA 送至诺和致源科技有限公司测序,采用细菌全 基因组 de novo 测序技术,构建 Illumina PE(400 bp) 文库,利用 Illumina (Miseq/Hiseq)平台测序, de novo组装后进行生物信息分析。

 1.4.5 序列结构分析 (1)菌株所携带质粒的分析:将拼接好的测序结果上传至 Plasmid Finder 1.3 数据库(https://cge.cbs.dtu.dk/services/PlasmidFinder/)。(2)菌株所含耐药基因的分析:将拼 接好的测序结果上传至 Res Finder 3.0 数据库(https://cge.cbs.dtu.dk/services/ResFinder/)。

1.4.6 基因环境分析 对本试验中大肠埃希菌、阴 沟肠杆菌、肺炎克雷伯菌中携带的碳青霉烯耐药基 因进行基因环境分析。将待分析菌株的全基因测序 结果应用 Mauve 软件与参考序列进行比对,找出耐 药基因所在重叠群(Contig 或 Scaffold),进行 Blast 比对,找出与待分析菌株相似的菌株基因环境,用 Snap Gene 软件进行序列比对,最后用 Easyfig 软件 画出相应的基因环境图,用 Adobe Illustrator CC 进 行图片编辑,最终得到待测菌株的基因环境图。

1.4.7 多位点序列分型(MLST) (1) ST 分型: 将拼接好的进行全基因组测序菌株的测序结果上传 至 pMLST 1.4 数据库(https://cge.cbs.dtu.dk/ services/pMLST/),分析其所属 ST 型。(2)新的 ST 型上传:将疑似新的 ST 型的全基因组测序结果 提交至 Acinetobacter baumannii MLST 数据库(https://pubmlst.org/abaumannii/submission.shtml)以获得新的 ST 型。

1.5 质控菌株 大肠埃希菌 ATCC 25922、大肠

埃希菌 ATCC 8739 为华南农业大学实验室保存 菌株。

2 结果

2.1 细菌的鉴定与 MLST 结果 共收集 62 株 CRE,成功复活 51 株,经细菌鉴定均为肠杆菌科细 菌;11 株 CRE 未复活,主要是菌株留存年限较远。 成功复活的 51 株 CRE 中耐碳青霉烯类肺炎克雷伯 菌(carbapenem-resistant *Klebsiella pneumoniae*, CRKP)30 株,耐碳青霉烯类大肠埃希菌(carbapenem-resistant *Escherichia coli*, CREC)9 株,耐碳青 霉烯类阴沟肠杆菌(carbapenem-resistant *Enterobacter cloacae*, CRECL)6 株,其他 CRE 6 株。 CRKP MLST 主要包括 3 株 ST147、2 株 ST11; CREC MLST 主要包括 3 株 ST167; CRECL MLST 主要包括 3 株 ST93、2 株 ST88。见表 2。

2.2 药敏试验结果 51株 CRE 对 AMP、CTX 的 耐药率最高,均为 100%;其次是 MEM、SXT,均为 96.08%。见表 3。

2.3 全基因测序结果 35株(68.63%)CRE携带 一种耐碳青霉烯类的耐药基因,15株(29.41%) CRE 同时携带两种或两种以上耐碳青霉烯类的耐 药基因;1株未检出耐碳青霉烯类的耐药基因,但检 出多种耐其他抗菌药物的基因。51株 CRE 检出的 耐碳青霉烯类耐药基因分布情况为1株携带 bla_{KPC2},14株携带 bla_{IMP4},18株携带 bla_{NDM1},22株 携带 bla_{NDM5},2株携带 bla_{NDM9},10株携带 bla_{OXA1}, 10株携带 bla_{OXA-10},2株携带 bla_{OXA-23},2株携带 bla_{OXA-66}。51株 CRE 主要抗菌药物耐药基因检出 阳性率依次为四环素耐药基因(*tet*,94.12%)、甲氧 苄氨嘧啶耐药基因(*dfrA*,90.20%)、β-内酰胺酶基 因(*bla*_{TEM},88.24%)。见图1。

2.4 菌株的基因环境分析结果 由于本研究中所 检出的 OXA 基因亚型(*bla*_{OXA-1}、*bla*_{OXA-10}、*bla*_{OXA-23}、 *bla*_{OXA-66})位于染色体上的可能性较大,未发现全球 广泛散播的 *bla*_{OXA-48-like}型,因此,只分析携带 *bla*_{NDM-1}、*bla*_{NDM-5}、*bla*_{NDM-9}、*bla*_{1MP-4}的菌株基因 环境。

2.4.1 *bla*_{NDM-1} 基因环境分析 选取携带 *bla*_{NDM-1} 基因不同菌种的肺炎克雷伯菌(4A5 和 4G5)、大肠 埃希菌(3D6)、弗劳地柠檬酸杆菌(3G6)、黏质沙雷 菌(4E6)的全基因测序结果进行基因环境分析,发 现 4G5、3G6、4A5、4E6 的 *bla*_{NDM-1}基因位于 13 524 bp 表 2 51 株 CRE 的 MLST 结果

Table 2 MLST results of 51 strains of CRE

编号	标号(年份-编码)	ST 分型	编号	标号(年份-编码)	ST 分型
3B6 - 1	肺炎克雷伯菌 - 201301	11	4G5	肺炎克雷伯菌 - 201727	UK
3E1 - 2	肺炎克雷伯菌 - 201302	34	4H3	肺炎克雷伯菌 - 201728	UK
3E3 - 1	肺炎克雷伯菌 - 201303	UK	5A3	肺炎克雷伯菌 - 201729	UK
3E6 - 1	肺炎克雷伯菌 - 201304	UK	5A4	肺炎克雷伯菌 - 201730	45
3F1	肺炎克雷伯菌 - 201405	UK	3D6	大肠埃希菌 - 201301	38
3F2 - 2	肺炎克雷伯菌 - 201406	3073	3G1	大肠埃希菌 - 201402	167
3F6	肺炎克雷伯菌 - 201407	48	3G2 - 2	大肠埃希菌 - 201403	UK
3G2 - 1.1	肺炎克雷伯菌 - 201408	308	4F1	大肠埃希菌 - 201604	167
3G4	肺炎克雷伯菌 - 201409	UK	4H4	大肠埃希菌 - 201705	167
3G5	肺炎克雷伯菌 - 201410	UK	4H5	大肠埃希菌 - 201706	10
3H1 - 3	肺炎克雷伯菌 - 201411	17	5A1	大肠埃希菌 - 201707	UK
3H5	肺炎克雷伯菌 - 201412	UK	5A2	大肠埃希菌 - 201708	UK
3H2	肺炎克雷伯菌 - 201413	UK	5A5	大肠埃希菌 - 201709	410
3H3 - 2	肺炎克雷伯菌 - 201414	UK	3B3	阴沟肠杆菌 - 201301	93
3H4 - 2	肺炎克雷伯菌 - 201415	147	3B4	阴沟肠杆菌 - 201302	93
4A2 - 2	肺炎克雷伯菌 - 201516	147	3B5	阴沟肠杆菌 - 201303	93
4A4	肺炎克雷伯菌 - 201517	UK	3C3	阴沟肠杆菌 - 201304	88
4A5	肺炎克雷伯菌 - 201518	UK	3C6	阴沟肠杆菌 - 201305	88
4B6 - 1	肺炎克雷伯菌 - 201519	11	4H2	阴沟肠杆菌 - 201706	UK
4C1	肺炎克雷伯菌 - 201520	UK	3G6	弗劳地柠檬酸杆菌 - 201401	UK
4C2	肺炎克雷伯菌 - 201521	UK	4D3	弗劳地柠檬酸杆菌 - 201602	UK
4C5	肺炎克雷伯菌 - 201522	147	4H1	雷氏普罗威登斯菌-201701	UK
4C6 - 1	肺炎克雷伯菌 - 201623	392	5B1	雷氏普罗威登斯菌 - 201702	UK
4F2	肺炎克雷伯菌 - 201624	UK	4E6	黏质沙雷菌 - 201601	UK
4F6 - 1	肺炎克雷伯菌 - 201725	UK	5A6	解鸟氨酸乌拉尔菌-201701	UK
4G4	肺炎克雷伯菌 - 201726	UK			

注:部分标本在分离的时候,若存在不同形态的菌株,会分离出不同标本,例如,4C1-1、4C1-2为标本号 4C1 分离的菌株,若鉴定结果为同种细菌,则汇总时用标本号;若为不同细菌,则以菌株分离的编号为准;若无法鉴定,则不纳入分析;UK 表示型号未知

表 3 51 株 CRE 的药敏结果

Table 3	Antimicrobial	susceptibility	testing	results	of	51
	strains of CRI	Ξ				

抗菌药物	敏感率(%)	中介率(%)	耐药率(%)
AMP	0.00	0.00	100.00
CTX	0.00	0.00	100.00
MEM	1.96	1.96	96.08
CS	78.43	0.00	21.57
TIG	72.55	0.00	27.45
GEN	25.49	3.92	70.59
AMK	62.75	3.92	33.33
FOS	47.06	13.72	39.22
CIP	3.92	3.92	92.16
SXT	3.92	0.00	96.08

的 DNA 片段上。进一步比对发现 4G5 与 pNDM-HN380-IncX3 的基因环境完全相同,在 bla_{NDM-1} 的 上游均是被 IS5 截断的 ISAba125,而下游在 insE 被 IS26 所截断;而 4A5 则比 pNDM-HN380 少了 一段被 IS5 截断的 ISAba125 的上游。经测序后显 示 4 株(4G5、3G6、4A5、4E6)携带 bla_{NDM-1} 菌株的基 因环境见图 2a。3D6 菌株的基因环境则与存在于 pNDM-KN-IncA/C 上的基因环境相似,相比于质 粒 pNDM-KN,3D6 缺失一段长度为 18 885 bp 包含 有 Tn7 转座子的碱基序列,见图 2b。

图 1 51 株 CRE 主要抗菌药物耐药基因检出情况

Figure 1 Detection of major antimicrobial resistance genes in 51 strains of CRE

注:图 a 中 4E6 的基因环境为 4G5 上两个绿色标记的区间内的基因环境, 3G6 的基因环境为 4A5 上两个橙黄色标记的区间内的基因环境;图 b 是 3D6 的基因环境

2.4.2 *bla*_{NDM-5} 基因环境分析 选取携带 *bla*_{NDM-5} 基因不同菌种的肺炎克雷伯菌(4A4)、阴沟肠杆菌(4H2)、大肠埃希菌(4H5)、解鸟氨酸乌拉尔菌

(5A6)的全基因测序结果进行基因环境分析,发现 4H2 与 4H5 的基因环境与质粒 pNDM-IncX3 的 *pir-dnaJ* 之间的序列相同,其 *bla*NDM-5 基因均位于 45.594 kb的 DNA 序列上; *bla*_{NDM-5}的上游是被 IS5 截断的 ISA*ba125*, 下游在 *cutA1* 处被 IS26 所截断。 而菌株 4A4 与 5A6 的基因也与 pNDM-IncX3 相 同,分别为 3 122 bp 和 3 502 bp 的 DNA 序列,不过 位于截断的 IS26 和 ISAba125 之间。经测序后显 示 4 株携带 bla_{NDM-5} 菌株的基因环境见图 3。

注:4A4 的基因环境为 4H2 上两个绿色标记的区间内的基因环境;5A6 的基因环境为 4H2 上两个橙黄色标记的区间内的基因环境 图 3 携带 bla_{NDM-5} 的菌株基因环境

2.4.3 *bla*_{NDM-9} 基因环境分析 选取携带 *bla*_{NDM-9} 基因的肺炎克雷伯菌(3H4-2)的全基因测序结果 进行基因环境分析,发现 *bla*_{NDM-9} 的基因环境与 pNDM-HN380 的基因环境基本相同,位于 50 156 bp 的 DNA 片段上,与 *bla*_{NDM-1} (4G5)不同的是 *bla*_{NDM-9}的上游是完整的 ISA*ba125*,而不是被 IS5 截断的,下游在 *insE* 下游被 IS26 所截断,且 3H4-2 比 pNDM-HN380 少了一段 IS26-*bla*_{SHV-12}-ygbI-ygbJ-IS26 的 DNA 序列。见图 4。

2.4.4 bla_{IMP4}基因环境分析 选取携带 bla_{IMP4}基 因不同菌种的肺炎克雷伯菌(4A4)、阴沟肠杆菌 (3B3)、雷氏普罗威登斯菌(5B1)的全基因测序结果 进行基因环境分析,发现 4A4 基因环境与 KP 3 IMP 的基因环境完全相同,位于 3 777 bp 的 DNA 拼接片段上,其 DNA 片段的 *catB3* 被 IS26 截断, IS26 也只有 127 bp 碱基残留,见图 5a。5B1 的基 因环境与质粒 pPrY2001 较相似,*bla*_{IMP4} 两端为 ISCR1 以及 Tn1337 转座子插入序列的 13 102 bp 的 DNA 片段上,见图 5b。

3 讨论

2012—2018 年,该院 CRE 总体检出率为 1.25%(229/18 270),CRE 的检出率呈逐年增加的 趋势。7 年共检出 229 株 CRE,检出居前 3 位的依 次为 CRKP(74 株)、CREC(48 株)、CRECL(45 株), 与 2017 年 CHINET^[5]全国调查结果一致。

51 株 CRE 的全基因组测序结果显示,该院检 出的耐碳青霉烯类耐药基因以 bla_{NDM-5} 最多(22 株), 其次为 bla_{NDM-1} (18 株)、 bla_{1MP-4} (14 株);有 15 株 CRE 同时携带两种及两种以上碳青霉烯类的耐药 基因。本研究中,检出的β-内酰胺酶基因种类最多, 主要有 bla_{KPC-2} 、 bla_{1MP-4} 、 bla_{NDM} 、 bla_{OXA} 、fona、 bla_{SFO-1} 、 bla_{SHV} 、 bla_{TEM} 、 bla_{CTX-M} 、 bla_{CMY} 、 bla_{DHA-1} ,其 中 bla_{4em} 和 bla_{NDM} 检出率为 88.24%、82.35%,与氨 苄西林(耐药率 100.00%)、美罗培南(耐药率 96.08%)的药敏结果较一致;甲氧苄氨嘧啶耐药基 因(dfrA)和磺胺类耐药基因(sul)检出率是 90. 20%、70.59%,与复方磺胺甲噁唑(耐药率 96.08%) 的药敏结果较一致;磷霉素耐药基因(fosA)检出率 是 23.53%, 与磷霉素(耐药率39.22%)的药敏结果 较一致;庆大霉素耐药基因 aph、aac、aadA 的检出 率分别是 58.82%、50.98%、64.71%,与庆大霉素 (耐药率 70.59%)的药敏结果较一致;喹诺酮耐药 基因 (qnr 阳性率 52.94%; oqxA、oqxB 检出率 27.45%)检出情况,小于环丙沙星(耐药率92.16%) 的药敏结果,可能与其他抗菌药物耐药基因的高水 平表达起协同耐药的作用;头孢菌素类耐药基因 *bla*_{AmpC1} 与 *bla*_{AmpC2}、*bla*_{CTX-M} 的检出率分别为 49.02%、72.55%,虽然远低于药敏试验中头孢噻肟 的耐药率(100.00%),但考虑到携带 bla_{NDM}基因会 同时介导头孢类和碳青霉烯类耐药,因此属于合理 的情况;而氨基糖苷类耐药基因 armA 检出率是 15.69%,小于阿米卡星的耐药率(33.33%),可能与 所检测氨基糖苷类耐药基因的表达水平不高或与其 他的耐药机制有关。

本研究结果显示,CRE 菌株对多种抗菌药物均

表现出多重耐药的现象,但未检测联合用药后细菌 的耐药情况。《广泛耐药革兰阴性菌感染的实验诊 断、抗菌治疗及医院感染控制:中国专家共识》[6]指 出,碳青霉烯类与磷霉素、多粘菌素、替加环素、利福 平等联合治疗 CRE 感染的临床疗效,要优于单药或 其他联合用药方案;碳青霉烯类抗生素用于治疗 CRE 感染要符合三方面的条件:(1)MIC≪8 mg/L; (2)大剂量给药(如美罗培南 2 g q8h);(3)延长每剂 静脉滴注时间至 2~3 h。此外,临床医生要严格掌 握碳青霉烯类抗生素的临床应用适应证。全国抗菌 药物临床应用监测网数据显示,碳青霉烯类抗生素 使用强度由 2011 年的 1.83 DDDs/100 人•天上升至 2017年的 3.28 DDDs/100 人•天。临床碳青霉烯类 抗生素使用量的增加,除与多重耐药菌(MDRO)感 染、免疫缺陷/免疫抑制的患者增多外,还与部分临 床医生不合理使用抗菌药物有关。因此,明确为 MDRO 重症患者才能使用碳青霉烯类抗生素, 目用 药前应送检标本,明确病原体与药敏情况后,再结合 患者病情合理降阶梯治疗^[7]。

本研究 MLST 结果显示, CRKP 中包含9种不 同的 ST 型,其中 ST147 和 ST11 较流行。来自匈 牙利 2005 年的研究^[8] 推测, ST11 和 ST147 可能是 导致 blactx-M 基因散播的重要克隆群。随后相关研 究^[9-10]表明,产 ESBLs 肺炎克雷伯菌造成的医院感 染中,ST11和 ST147 是主要的克隆群。虽然 ST11 常被认为是 bla_{KPC} 基因散播的主要国际流行株,而 在 2009 年首次发现新型碳青霉烯酶 NDM 后^[11], 这两个克隆群携带 bla_{NDM} 基因在全球频繁被报 道^[12-14]。研究^[15]显示,ST147可能是由中东地区传 播至欧洲。中国 Wang 等^[16]2011-2012 年从 11 省 13 所医院获得的 1 870 株肠杆菌科细菌中,发现 3 株 产 NDM-1 肺炎克雷伯菌,均属于 ST147 型。 CREC 中 ST167 较流行,该序列型在国际上检出较 少,仅在欧洲少量检出[17],我国最早在2013年于1例 男性患者的直肠拭子标本中分离到1株产 NDM-5 的大肠埃希菌,属于 ST167 型,之后常于我国临床 检出^[18-20]。所检出的 CRECL 分型属于 ST93 和 ST88,分别携带 bla_{IMP-4}和 bla_{NDM-1};ST93 在国际和 国内的报道较多,美国^[21]、南非^[22]、波兰^[23]均有该 序列型的报道; Jin 等^[24] 2012—2016 年间对来自我 国 11 个城市 12 所医院的 55 株 CRECL 研究发现, ST93 是第二流行的克隆群,仅次于 ST418,且来源 于国内的多个城市;而 Jia 等^[25] 2012—2016 年对我 国西南地区两所医院的1146株阴沟肠杆菌研究显 示,ST88 是最常见的 CRECL 序列型,其次为 ST9。

通过对携带 bla_{NDM-1}、bla_{NDM-5}、bla_{NDM-9}、bla_{IMP-4} 不同菌种的基因环境进行分析,发现几种耐药基因 各自的基因环境都与已报道的基因环境相似,无明 显的菌种间差异性,说明耐药基因通过水平传播能 够稳定存在于不同的菌种之间,对医院感染预防与 控制造成更大的威胁。

在我国,关于 blaNDM 基因的早期报道多来源于 不动杆菌属细菌,且常位于不可分型的质粒上[26-27], 随后 bla_{NDM}基因所在的 Tn125 转座子从不动杆菌 属细菌中转移到肠杆菌科细菌中[28],且位于约50 kb大小的不可分型质粒上,且能够发生跨种属传 播。而随后该基因位于 IncX3 型质粒上的研究更是 时有报道且呈逐年增多的趋势。在本研究中, bla_{NDM-5}、bla_{NDM-1}和 bla_{NDM-9}位于相似的基因环境中, 即耐药基因的上游存在插入序列 ISAba125, 区别在 于 bla_{NDM-1}和 bla_{NDM-5}中被 IS5 所截断,而在 bla_{NDM-9} 中则是完整的;而下游则是被插入序列 IS26 所截 断,区别在于 bla_{NDM-5}在 cutA1 处被 IS26 所截断,而 bla_{NDM-1}和 bla_{NDM-9}则是在 insE 下游被 IS26 所截断。 已有研究^[29]表明,pNDM-HN380可能是这种基因 环境的先祖质粒,值得关注的是在本研究中的18株 bla_{NDM-1}和2株 bla_{NDM-9}所在的基因环境均与其高度 相似,表明这种基因环境传播较为广泛。而在这种 基因环境的基础上,插入位点的改变形成了 bla_{NDM5}所在基因环境,意味着插入序列所介导的 基因环境的变化始终随着时间或外界压力的变化 而不断进化。

*bla*_{IMP4}基因首次报道^[30]分离自香港某医院重 症监护病房的不动杆菌属细菌,并随后在广东某医 院1例下肢溃疡患者分离的弗劳地柠檬酸杆菌中检 出^[31],截至目前,*bla*_{IMP4}基因已经被证实存在于多 种革兰阴性菌中,常位于 IncL/M 和 IncA/C 型质 粒上。本研究中4株不同菌种所携带 *bla*_{IMP4}基因 都存在于 *bla*_{IMP4}-*qacG2-aacA4-catB3*的基因盒中, 此环境与最初报道于广东某医院的环境相同,且在 世界范围内都有较多报道^[32-33],说明 I 型整合子在 *bla*_{IMP4}的散播过程中起到了重要的作用。

研究^[34]表明,造成 CRE 传播、定植或感染的危险因素主要有患者本身严重的基础疾病、频繁转科或者更换床位、侵袭性诊疗操作、广谱抗菌药物的使用。因此,CRE 的感控管理是一项复杂的系统工程,其传播及感染的危险因素多,且存在交叉影响,任何一个预防控制环节的疏漏,隔离防控措施不到

位,均可能导致 CRE 医院感染的传播,甚至流行和 暴发。

致谢:感谢广东省医院感染质量控制中心主任, 国家医院感染管理专业质控中心专家委员会委员, 广东省医学科学院,广东省人民医院侯铁英教授对 本研究提出的宝贵意见。

[参考文献]

- [1] World Health Organization. WHO publishes list of bacteria for which new antibiotics are urgently needed.2017[EB/OL].
 (2017 - 12)[2019 - 03]. https://www.who.int/news-room/ detail/27 - 02 - 2017-who-publishes-list-of-bacteria-for-which-newantibiotics-are-urgently-needed.
- [2] 尚红,王毓三,申子瑜.全国临床检验操作规程(第4版)[M].
 北京:人民卫生出版社,2015:3.
- [3] Clinical and Laboratory Standards Institute. Performance standards for antimicrobial susceptibility testing: 28th informational supplement, M100 - S28[S]. CLSI, 2018.
- [4] The European Committee on Antimicrobial Susceptibility Testing. Breakpoint tables for interpretation of MICs and zone diameters. Version 8. 1[EB/OL]. [2018 - 03]. http://www. eucast.org.
- [5] 胡付品,郭燕,朱德妹,等.2017年CHINET中国细菌耐药性 监测[J].中国感染与化疗杂志,2018,18(3):241-251.
- [6] Guan X, He L, Hu B, et al. Laboratory diagnosis, clinical management and infection control of the infections caused by extensively drug-resistant Gram-negative bacilli: a Chinese consensus statement [J]. Clin Microbiol Infect, 2016, 22 (Suppl 1); S15 - S25.
- [7] 中华人民共和国国家卫生健康委员会.碳青霉烯类抗菌药物临 床应用专家共识[S].北京,2018.
- [8] Damjanova I, Tóth A, Pászti J, et al. Expansion and countrywide dissemination of ST11, ST15 and ST147 ciprofloxacin-resistant CTX-M-15-type beta-lactamase-producing *Klebsiella pneumoniae* epidemic clones in Hungary in 2005 - the new 'MRSAs'? [J]. J Antimicrob Chemother, 2008, 62(5): 978 - 985.
- [9] Rodrigues C, Machado E, Ramos H, et al. Expansion of ES-BL-producing *Klebsiella pneumoniae* in hospitalized patients: A successful story of international clones (ST15, ST147, ST336) and epidemic plasmids (IncR, IncFIIK)[J]. Int J Med Microbiol, 2014, 304(8): 1100 - 1108.
- [10] Coque TM, Baquero F, Canton R. Increasing prevalence of ESBL - producing Enterobacteriaceae in Europe[J]. Euro Surveill, 2008,13(47), pii: 19044.
- [11] Yong D, Toleman MA, Giske CG, et al. Characterization of a new metallo-beta-lactamase gene, bla(NDM-1), and a novel erythromycin esterase gene carried on a unique genetic structure

in *Klebsiella pneumoniae* sequence type 14 from India[J]. Antimicrob Agents Chemother, 2009, 53(12): 5046-5054.

- [12] Giske CG, Froding I, Hasan CM, et al. Diverse sequence types of *Klebsiella pneumoniae* contribute to the dissemination of *bla*_{NDM-1} in India, Sweden, and the United Kingdom[J]. Antimicrob Agents Chemother, 2012, 56(5): 2735 - 2738.
- [13] Lee CS, Vasoo S, Hu F, et al. *Klebsiella pneumoniae* ST147 coproducing NDM-7 carbapenemase and RmtF 16S rRNA methyltransferase in Minnesota[J]. J Clin Microbiol, 2014, 52(11): 4109 - 4110.
- [14] Messaoudi A, Haenni M, Mansour W, et al. ST147 NDM-1producing *Klebsiella pneumoniae* spread in two Tunisian hospitals[J]. J Antimicrob Chemother, 2017, 72(1): 315 - 316.
- [15] Poirel L, Fortineau N, Nordmann P. International transfer of NDM-1-producing *Klebsiella pneumoniae* from Iraq to France
 [J]. Antimicrob Agents Chemother, 2011, 55(4): 1821 – 1822.
- [16] Wang X, Xu X, Li Z, et al. An outbreak of a nosocomial NDM-1-producing *Klebsiella pneumoniae* ST147 at a teaching hospital in mainland China[J]. Microb Drug Resist, 2014, 20 (2): 144-149.
- [17] Solé M, Pitart C, Roca I, et al. First description of an Escherichia coli strain producing NDM-1 carbapenemase in Spain
 [J]. Antimicrob Agents Chemother, 2011, 55(9): 4402 4404.
- [18] Zhu YQ, Zhao JY, Xu C, et al. Identification of an NDM-5producing *Escherichia coli* sequence type 167 in a neonatal patient in China[J]. Sci Rep, 2016, 6: 29934.
- [19] Huang Y, Yu X, Xie M, et al. Widespread dissemination of carbapenem-resistant *Escherichia coli* sequence type 167 strains harboring blandm-5 in clinical settings in China [J]. Antimicrob Agents Chemother, 2016, 60(7): 4364-4368.
- [20] Shen P, Yi M, Fu Y, et al. Detection of an Escherichia coli sequence type 167 strain with two tandem copies of bla_{NDM-1} in the chromosome[J]. J Clin Microbiol, 2016, 55(1): 199 – 205.
- [21] Ahn C, Syed A, Hu F, et al. Microbiological features of KPCproducing Enterobacter isolates identified in a U. S. hospital system[J]. Diagn Microbiol Infect Dis, 2014, 80(2): 154 -158.
- [22] Singh-Moodley A, Ekermans P, Perovic O. Emerging carbapenem-resistant *Enterobacter cloacae* producing OXA-48-, VIMand IMP-type-β-lactamases in Eastern Cape Hospitals in South Africa[J]. Open J Med Microbiol, 2015, 5(4): 246 – 253.
- [23] Izdebski R, Baraniak A, Zabicka D, et al. VIM/IMP carbapenemase-producing Enterobacteriaceae in Poland. Epidemic Enterobacter hormaechei and Klebsiella oxytoca lineages[J]. J Antimicrob Chemother, 2018, 73(10): 2675 - 2681.
- [24] Jin C, Zhang J, Wang Q, et al. Molecular characterization of carbapenem-resistant *Enterobacter cloacae* in 11 Chinese Cities
 [J]. Front Microbiol, 2018, 9:1597.
- $\left\lceil 25\right\rceil$ Jia X, Dai W, Ma W, et al. Carbapenem-resistant E. cloacae

in Southwest China: molecular analysis of resistance and risk factors for infections caused by NDM-1-producers[J]. Front Microbiol, 2018, 9: 658.

- [26] Hu H, Hu Y, Pan Y, et al. Novel plasmid and its variant harboring both a bla(NDM-1) gene and type iv secretion system in clinical isolates of Acinetobacter lwoffii [J]. Antimicrob Agents Chemother, 2012, 56(4): 1698 - 1702.
- [27] Fu Y, Du X, Ji J, et al. Epidemiological characteristics and genetic structure of *bla*_{NDM-1} in non-baumannii *Acinetobacter spp*. in China[J]. J Antimicrob Chemother, 2012, 67(9): 2114-2122.
- [28] Chen L, Peirano G, Lynch T, et al. Molecular characterization by using next-generation sequencing of plasmids containing bla_{NDM-7} in Enterobacteriaceae from Calgary, Canada[J]. Antimicrob Agents Chemother, 2015, 60(3): 1258 - 1263.
- [29] Wang Y, Tong MK, Chow KH, et al. Occurrence of highly conjugative IncX3 epidemic plasmid carrying bla_{NDM} in Enterobacteriaceae isolates in geographically widespread areas[J]. Front Microbiol, 2018, 9: 2272.
- [30] Chu YW, Afzal-Shah M, Houang ET, et al. IMP-4, a novel metallo-β-lactamase from nosocomial Acinetobacter spp. collected in Hong Kong between 1994 and 1998[J]. Antimicrob Agents Chemother, 2001, 45(3); 710 - 714.
- [31] Hawkey PM, Xiong J, Ye H, et al. Occurrence of a new metallo-β-lactamase IMP-4 carried on a conjugative plasmid in *Citrobacter youngae* from the People's Republic of China[J].

FEMS Microbiol Lett, 2001, 194(1): 53 - 57.

- [32] Espedido B, Partridge S, Iredell J. bla(IMP-4) in different genetic contexts in Enterobacteriaceae isolates from Australia
 [J]. Antimicrob Agents Chemother, 2008, 52(8); 2984 2987.
- [33] Partridge SR, Ginn AN, Paulsen IT, et al. pEl1573 carrying bla_{IMP-4}, from Sydney, Australia, is closely related to other IncL/M plasmids[J]. Antimicrob Agents Chemother, 2012, 56(11): 6029-6032.
- [34] Qin X, Yang Y, Hu F, et al. Hospital clonal dissemination of Enterobacter aerogenes producing carbapenemase KPC-2 in a Chinese teaching hospital[J]. J Med Microbiol, 2014, 63(Pt 2): 222-228.

(本文编辑:刘思娣、陈玉华)

本文引用格式:周仕丹,刘春来,杨润时,等. 某院耐碳青霉烯类肠 杆菌科细菌耐药基因分析[J]. 中国感染控制杂志,2019,18(6): 495-504. DOI:10.12138/j.issn.1671-9638.20195331.

Cite this article as: ZHOU Shi-dan, LIU Chun-lai, YANG Runshi, et al. Resistance genes of carbapenem-resistant Enterobacteriaceae in a hospital[J]. Chin J Infect Control, 2019,18(6):495 – 504. DOI:10.12138/j.issn.1671 – 9638.20195331.