Advances of ceftazidime/avibactam in the treatment of carbapenem-resis-tant Klebsiella pneumoniae infection
-
摘要: 近年来, 耐碳青霉烯类肺炎克雷伯菌(CRKP)感染的流行已成为全球公共卫生问题。头孢他啶/阿维巴坦(CAZ/AVI)作为一种新型的抗菌药物已批准用于治疗医院获得性肺炎/呼吸机相关肺炎、血流感染、肾移植术后感染和肝硬化合并严重感染。然而, 随着CAZ/AVI的使用, CAZ/AVI耐药菌株也随之产生。CAZ/AVI主要耐药机制为blaKPC基因过表达、产β-内酰胺酶及关键位点氨基酸的突变、膜孔蛋白丢失导致的细胞通透性改变和外排泵的过表达。本文将对CAZ/AVI在治疗CRKP感染方面的研究进展进行综述, 为临床诊断和治疗提供参考依据。
-
关键词:
- 头孢他啶/阿维巴坦 /
- 肺炎克雷伯菌 /
- 碳青霉烯酶 /
- 耐碳青霉烯类肺炎克雷伯菌
Abstract: In recent years, the prevalence of carbapenem-resistant Klebsiella pneumoniae (CRKP) infection has become a global public health issue. Ceftazidime/avibactam (CAZ/AVI) has been approved as a novel antimicrobial agent for the treatment of healthcare-associated pneumonia/ventilator-associated pneumonia, bloodstream infection, infection after kidney transplantation, and severe infection combined with liver cirrhosis. However, the use of CAZ/AVI has also led to the emergence of drug-resistant strains. The major mechanisms of drug-resistance include over-expression of blaKPC gene, mutation of β-lactamase and amino acids at key sites, changes in cell permeability caused by loss of membrane porin, and over-expression of efflux pump. This article reviews the research progress of CAZ/AVI in the treatment of CRKP infection, providing reference for clinical diagnosis and treatment. -
肺炎克雷伯菌(Klebsiella pneumoniae, KP)是临床上常见的条件致病菌,常定植于人体的呼吸道、肠道、皮肤等部位,可引起多部位感染[1]。既往根据KP的表型,可分为经典肺炎克雷伯菌(classical Klebsiella pneumoniae, cKP)、高毒力肺炎克雷伯菌(hypervirulent Klebsiella pneumoniae, hvKP)和高黏液型肺炎克雷伯菌(hypermucoviscosity Klebsiella pneumoniae, HMKP)[2-3]。随着碳青霉烯类抗生素的广泛使用,使得KP产生或获得了耐药基因,从而导致耐碳青霉烯类肺炎克雷伯菌(carba-penem-resistant Klebsiella pneumoniae, CRKP)的出现[4]。CRKP定义为对任意一种碳青霉烯类抗生素耐药或产碳青霉烯酶。CRKP感染在世界范围内流行越来越广泛,全球医疗机构受到重大威胁,给临床抗感染治疗带来极大挑战[5]。
1. CRKP的耐药现状
从全球范围来看,目前KP对碳青霉烯类抗生素耐药率超过50%的国家和地区,有希腊、印度和中东等,而中国和美国等国家耐药率相对较低[6]。据中国细菌耐药监测网(CHINET)报道,KP对临床常用碳青霉烯类抗生素,如亚胺培南、厄他培南和美罗培南等的耐药率已达23%,对头孢菌素类抗生素耐药率超过40%[7]。另有研究[8]报道,CRKP的检出率在2022年已上升至78.9%,且对亚胺培南、厄他培南和美罗培南等碳青霉烯类抗生素的耐药率已高达98%。
2. CRKP的耐药机制
产碳青霉烯酶是CRKP耐药的主要原因,根据Ambler分类法,可以将此类酶分为A、B、D三类。A类酶主要分布在亚洲和美洲,而B类酶和D类酶主要分布在亚洲和欧洲[9]。A类酶中的肺炎克雷伯菌碳青霉烯酶(Klebsiella pneumoniae carbapenemase, KPC)几乎可以水解全部的β -内酰胺类抗生素,并且在CRKP中占比最高[10]。KPC有许多突变体,其中KPC-2和KPC-3最常见。在中国,blaKPC水平转移和克隆在CRKP中分布较为广泛。值得注意的是,当HMKP携带blaKPC基因时,可以转变为同时具有高毒力、高黏液和耐碳青霉烯类抗生素的耐碳青霉烯类高黏液型肺炎克雷伯菌(CR-HMKP)[11]。
B类酶为金属β-内酰胺酶(metallo-β-lactamase, MBL),β-内酰胺酶主要通过水解细菌的β-内酰胺环导致细菌对β-类酰胺类抗生素耐药,MBL可以水解单酰胺环类药物如氨曲南以外的所有抗菌药物。MBL主要包括NDM-1、VIM-1和IMP。产IMP菌株多为鲍曼不动杆菌,主要集中在中国、印度、日本、澳大利亚等地区。VIM则多由肠杆菌携带,主要分布于地中海地区[9]。以NDM-1为代表的基因具有高传播性,可以在质粒之间及其他可移动元件之间快速传播,使得原本不具有抗性的菌株获得耐药,严重威胁人类健康[12]。
D类酶(奥沙西林水解碳青霉烯酶)以OXA-23最为流行,其次为OXA-48和OXA-40,尽管这类酶具有碳青霉烯酶活性,但是其水解活性较低[13-14]。
3. 头孢他啶/阿维巴坦(ceftazidime/avibactam, CAZ/AVI)与CRKP
3.1 CAZ/AVI的作用机制
AVI是一种新的β-内酰胺酶抑制剂,作用于以丝氨酸为活性位点的β-内酰胺酶,可抑制A类[包括超广谱β-内酰胺酶(ESBLs)及KPC酶]、C类(主要是AmpC酶)和部分D类β-内酰胺酶(如OXA-48)[15]。CAZ具有广谱抗菌活性,可以与革兰阴性杆菌的青霉素结合蛋白结合,进而抑制细胞壁合成,从而达到杀菌效果。CAZ/AVI是由CAZ与AVI组成的一种新型复合制剂,是治疗产KPC的CRKP感染的有效药物,其主要抗菌机制是AVI通过共价结合β-内酰胺酶活性位点上的羟基,从而降低水解酶的活性,达到抑制β-内酰胺酶的作用,进而保护CAZ的杀菌作用[16]。2017年CAZ/AVI进入中国市场,目前CRKP耐药率仅为5%,是治疗CRKP感染的一个较好的选择[17-18]。尽管CRKP对CAZ/AVI具有较低的耐药率,但中国已经有关于CRKP耐CAZ/AVI的报道[19]。
3.2 CAZ/AVI的耐药机制
CRKP对CAZ/AVI的耐药机制包括以下四个方面:blaKPC基因过表达、产β-内酰胺酶及关键位点氨基酸的突变、膜孔蛋白丢失导致的细胞通透性改变和外排泵的过表达。blaKPC基因过表达是CRKP耐药的主要机制,blaKPC可以通过水解AVI消除其杀菌作用,使得CRKP对CAZ/AVI产生耐药。在美国,CRKP中最常见的耐药基因是blaKPC-3;在中国,blaKPC-2是最常见的耐药基因[20]。此外,有报道[21]表明blaKPC过表达还存在导致野生型blaKPC产生对CAZ/AVI耐药的可能。Liao等[22]在使用CAZ/AVI治疗CRKP感染的患者时发现,blaKPC-2的突变会使CRKP对CAZ/AVI产生耐药,可能是由于blaKPC-2发生了点突变,导致CAZ与酶的结合力增加,进而影响到与AVI的结合,致使CAZ/AVI失活。
研究[23]表明,OXA-1、TEM-1、CMY-42、CTX-M-15和NDM-5等耐药基因表达的金属β-内酰胺酶可降低以美罗培南和亚胺培南为代表的碳青霉烯类抗生素的敏感性;当β-内酰胺酶活性位点处的残基发生突变时,会导致CAZ/AVI对CRKP的最低抑菌浓度(minimum inhibitory concentration, MIC)增加[24]。Ω环是β-内酰胺酶的重要活性位点,起到维系sp179和Arg164之间的桥梁作用,是重要的结构基础[25]。Ω环的突变可以增强CAZ的亲和力,降低与AVI的结合,从而导致CAZ/AVI耐药[26]。A类β-内酰胺酶的产生是导致CRKP对CAZ/AVI耐药的主要机制,包括ESBLs和KPC,而表达KPC的blaKPC基因中以blaKPC-2和blaKPC-3基因占比最高[27]。Livermore等[28]发现几乎所有产ESBLs的CRKP突变株都提示对β-内酰胺类抗生素的MIC值升高,如CAZ/AVI对CRKP的MIC值上升了8~128倍,由此可以推断,产ESBLs的突变可以导致CRKP对CAZ/AVI产生耐药。
膜孔通道蛋白突变可导致细胞的通道发生改变,也可以引起CAZ/AVI耐药。膜孔通道蛋白OmpK35及OmpK36缺失或者发生突变时,CAZ/AVI对CRKP的MIC会显著升高,且OmpK35缺失导致MIC升高的幅度远远高于OmpK36[29-30]。膜孔蛋白OmpK35缺失可以导致CRKP对CAZ/AVI的敏感性降低;当OmpK36存在时,可以使编码膜孔蛋白的基因突变,阻止功能性膜孔蛋白OmpK35的产生,从而阻止抗生素进入细菌细胞[31]。膜孔通道蛋白OmpK35及OmpK36都缺失的情况下,blaKPC-3和blaSHV-12的表达量显著增加,也可导致对CAZ/AVI耐药[32]。
CRKP还可以通过增加细胞膜的通透性和增强外排泵的活性对CAZ/AVI产生耐药性。Nelson等[32]研究表明,acrAB外排泵的调节因子ramR突变可导致AcrAB-TolC外排系统的过表达,并与膜孔蛋白的改变共同促成CRKP对CAZ/AVI的耐药性。
3.3 CAZ/AVI的体外耐药
尽管CAZ/AVI在临床应用时间不长,但已有CAZ/AVI耐药的相关报道。最新一项研究[15]显示,耐碳青霉烯类肠杆菌(CRE)对于CAZ/AVI的耐药率在全球范围内相对较低(<2.6%)。国内研究[19]报道,共收集872株CRKP菌株,其中3.7%对CAZ/AVI耐药,且产KPC和MBL,对CAZ/AVI的MIC50和MIC90分别为4、8 μg/mL。另一项关于CRKP血流感染的研究[33]报道,CRKP对CAZ/AVI的敏感范围为0.25~ 4 μg/mL,中位数为1 μg/mL,产KPC-2的CRKP占47%。此外,有研究[15, 34]指出AVI联合氨曲南比单独使用氨曲南治疗CRE时,MIC降低至1/128以下;CAZ/AVI联合美罗培南治疗产KPC的CRKP时,具有协同作用。但是,目前关于CAZ/AVI与其他药物联合治疗CRKP感染时MIC值变化的研究相对较少,可以进一步深入研究。
3.4 CAZ/AVI的治疗效果
CAZ/AVI已批准用于治疗成人严重感染,包括医院获得性肺炎/呼吸机相关肺炎(hospital-associated pneumonia/ventilator-associated pneumonia, HAP/VAP)、血流感染(bloodstream infection, BSI)、肾移植术后感染和肝硬化导致的严重感染[35-37]。CAZ/AVI在治疗CRKP感染方面优于替加环素和多黏菌素,与传统的抗菌药物相比,CAZ/AVI可明显降低CRKP感染患者的病死率。一项纳入90例CRKP感染患者的研究[38]显示,接受CAZ/AVI治疗的患者14天病死率和30天病死率分别为19%、33%,高于其他抗菌药物治疗组。一项回顾性研究[39]纳入105例患有脓毒症、混合感染及多器官功能损伤患者,在接受7 d CAZ/AVI治疗后,与多黏菌素治疗组相比,显示出更低的病死率和更高的清除率,CAZ/AVI具有更高的安全效益,显示CAZ/AVI在治疗重症患者中效果较好。
一项针对CRKP感染引起的HAP/VAP随机、双盲研究[40]显示,临床改良意愿治疗组患者和临床可评估治疗组患者均接受CAZ/AVI治疗,两组临床治愈率分别为68.8% (245/356)、77.4%(199/257)。Shi等[41]纳入了105例CRKP感染的HAP/VAP患者,研究结果表明,接受CAZ/AVI治疗组患者的临床治愈率和微生物治愈率分别为51.2%(22/43)、74.4%(32/43),均高于接受替加环素治疗组患者的治愈率[29.0%(18/62) VS 33.9%(21/62)]。表明CAZ/AVI治疗CRKP感染引起的HAP/VAP患者有较好的效果。需要注意的是,尽管CAZ/AVI在治疗HAP/VAP方面显示出较高的疗效,但抗感染方案仍然需要根据患者的具体情况进行个体化选择。
BSI可以继发于其他部位感染,如肺部感染、腹腔感染,也可以为原发性感染。CRKP引起的BSI不仅会延长患者住院时间,而且会增加患者的病死率。2017年,CAZ/AVI就已经开始用于治疗严重的CRKP引起的BSI[42]。一项回顾性的病例对照研究[16]显示,CAZ/AVI治疗CRKP引起的BSI 30天病死率为36%,而使用其他抗菌药物患者30天病死率为55.8%。另一项研究[33]纳入49例CRKP BSI患者,结果显示,接受CAZ/AVI治疗的患者病死率仅为9%(1/11),9例接受CAZ/AVI和黏菌素联合治疗的患者无死亡;根据其机制模型显示,联合用药可以早期杀灭细菌并限制其再生,还可以产生协同作用。以上研究均显示了CAZ/AVI在治疗CRKP BSI患者中具有显著效果,可以降低患者的病死率。
CAZ/AVI不仅可以用于治疗CRKP引起的HAP/VAP和BSI,而且在治疗移植术后CRKP感染也具有较好的效果。一份病例报告中描述,使用CAZ/AVI治疗肾移植后由CRKP感染导致的椎体骨髓炎时,单独使用CAZ/AVI治疗效果不弱于美罗培南和AVI的联合使用,且拥有更低的肾毒性,能更好的达到临床疗效[43]。另一项关于CAZ/AVI治疗肾移植术后CRKP感染研究显示,接受CAZ/AVI治疗的22例患者病死率仅为13.6%,低于接受其他抗菌药物治疗组患者的病死率(43.8%,14/32)。CAZ/AVI给肾移植术后CRKP感染的患者提供了新的治疗选择,降低了患者因感染导致的病死率。
此外,CAZ/AVI还可以用于治疗肝硬化合并CRKP感染的患者。近年来,世界各地都有报道称肝硬化患者出现CRKP感染后治疗难度大、失败率高,且会增加肝硬化失代偿期患者病死率。一项回顾性研究[44]纳入了39例CRKP感染的肝硬化患者,结果显示,接受CAZ/AVI治疗失败率(6.7%,1/15)低于其他抗菌药物治疗失败率(37.5%,9/24)。该研究评估了CAZ/AVI与其他抗菌药物对比治疗CRKP感染的效果,结果显示CAZ/AVI具有更低的失败率和更高的院内生存率。既往研究[45]显示,肝硬化患者若使用多黏菌素等肾毒性药物治疗可增加肾衰竭风险,因此肝硬化合并感染患者应慎重选择抗菌药物。安全性相对较高、疗效较高的CAZ/AVI是一个不错的选择。
3.5 CAZ/AVI
的局限性CAZ/AVI在治疗CRKP感染中效果明确,但过高的价格使得CAZ/AVI在临床应用时受到一定限制。研究[38, 46]表明,使用CAZ/AVI治疗CRKP感染时,虽然可以降低病死率、增加治疗成功率和缩短住院时间,但高昂的花费使得应用受到限制,因此很多情况无法作为首选用药。此外,使用CAZ/AVI治疗CRKP感染时也会出现一些不良反应,如腹泻、恶心、便秘、肾结石、肾盂肾炎、膀胱炎等[47]。尽管CAZ/AVI不良反应较多,但未曾出现因CAZ/AVI导致的死亡病例报告。在CAZ/AVI治疗CRKP感染过程中虽然效果明确,但也开始出现耐药。一项关于CAZ/AVI与多黏菌素联合治疗CRKP感染患者的临床试验中发现,CRKP对CAZ/AVI的耐药率高达13.5%[48]。
4. 小结
近年来,在全球范围内CRKP感染急剧增加的情况下,新型β -内酰胺酶复合剂的出现可以更好地清除细菌,治愈患者,延缓菌株蔓延的速度和侵袭能力,给CRKP感染患者带来了希望。目前CAZ/AVI在临床上的治疗效果不劣于美罗培南,因此在其他治疗方案无效时,可以使用CAZ/AVI治疗CRKP感染,降低患者的病死率,延长患者生存时间。临床需根据患者病情选择联合或单药治疗,联合使用CAZ/AVI的活性比单独使用CAZ高出81.58%[49]。CAZ/AVI联合其他抗菌药物效果更好,可以减少blaKPC向blaVIM的转变,减少耐药的发生[50]。目前,面对CRKP的高耐药性和高传播性,应积极加强合作,开发更多针对CRKP的抗菌药物,同时也要加强抗菌药物的合理应用,延缓细菌耐药性的产生。
-
[1] Choby JE, Howard-Anderson J, Weiss DS. Hypervirulent Klebsiella pneumoniae-clinical and molecular perspectives[J]. J Intern Med, 2020, 287(3): 283-300. doi: 10.1111/joim.13007 [2] Russo TA, Olson R, Fang CT, et al. Identification of biomarkers for differentiation of hypervirulent Klebsiella pneumoniae from classical K. pneumoniae[J]. J Clin Microbiol, 2018, 56(9): e00776-18. [3] 王海日罕, 多丽波. 高毒力高耐药肺炎克雷伯菌的研究进展[J]. 中国感染控制杂志, 2021, 20(11): 1069-1074. doi: 10.12138/j.issn.1671-9638.20217949 Wang HRH, Duo LB. Advances in hypervirulent and high antimicrobial-resistant Klebsiella pneumoniae[J]. Chinese Journal of Infection Control, 2021, 20(11): 1069-1074. doi: 10.12138/j.issn.1671-9638.20217949 [4] Han YL, Wen XH, Zhao W, et al. Epidemiological characte-ristics and molecular evolution mechanisms of carbapenem-resistant hypervirulent Klebsiella pneumoniae[J]. Front Microbiol, 2022, 13: 1003783. doi: 10.3389/fmicb.2022.1003783 [5] 瞿洪平, 谭若铭. 重症监护病房耐药菌感染防控模式的临床应用[J]. 中国感染控制杂志, 2022, 21(12): 1161-1163. http://www.zggrkz.com/zggrkzzz/article/abstract/2022-12-1161?st=search Qu HP, Tan RM. Clinical application of drug-resistant bacteria infection prevention and control mode in intensive care unit[J]. Chinese Journal of Infection Control, 2022, 21(12): 1161-1163. http://www.zggrkz.com/zggrkzzz/article/abstract/2022-12-1161?st=search [6] Veeraraghavan B, Shankar C, Karunasree S, et al. Carbape-nem resistant Klebsiella pneumoniae isolated from bloodstream infection: Indian experience[J]. Pathog Glob Health, 2017, 111(5): 240-246. doi: 10.1080/20477724.2017.1340128 [7] 胡付品, 郭燕, 吴湜, 等. CHINET 2023年上半年细菌耐药监测结果(2023年1—6月)[EB/OL]. (2023-08-28)[2023-10-15]. http://222.143.64.102/ganran/contents/38/3833.html. Hu FP, Guo Y, Wu S, et al. CHINET surveillance of antimicrobial resistance among the bacterial isolates in first half of 2023. (January-June, 2023)[EB/OL]. (2023-08-28)[2023-10-15]. http://222.143.64.102/ganran/contents/38/3833.html. [8] 刘洁, 赵建平. 2013—2022年耐碳青霉烯类肠杆菌目细菌检出率的变化趋势及耐药性[J]. 中国感染控制杂志, 2023, 22(10): 1210-1217. doi: 10.12138/j.issn.1671-9638.20234336 Liu J, Zhao JP. Trends in the detection rate and antimicrobial resistance of carbapenem-resistant Enterobacterales, 2013-2022[J]. Chinese Journal of Infection Control, 2023, 22(10): 1210-1217. doi: 10.12138/j.issn.1671-9638.20234336 [9] Brink AJ. Epidemiology of carbapenem-resistant Gram-negative infections globally[J]. Curr Opin Infect Dis, 2019, 32(6): 609-616. doi: 10.1097/QCO.0000000000000608 [10] Li SS, Feng XD, Li M, et al. In vivo adaptive antimicrobial resistance in Klebsiella pneumoniae during antibiotic therapy[J]. Front Microbiol, 2023, 14: 1159912. doi: 10.3389/fmicb.2023.1159912 [11] Bonomo RA, Burd EM, Conly J, et al. Carbapenemase-producing organisms: a global scourge[J]. Clin Infect Dis, 2018, 66(8): 1290-1297. doi: 10.1093/cid/cix893 [12] 朱致熹, 张洁琳, 陈依军. 螯合剂类金属β-内酰胺酶抑制剂的研究进展[J]. 中国药科大学学报, 2022, 53(4): 410-422. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGYD202204004.htm Zhu ZX, Zhang JL, Chen YJ. Recent advances in research on chelators as metallo-β-lactamase inhibitors[J]. Journal of China Pharmaceutical University, 2022, 53(4): 410-422. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGYD202204004.htm [13] Sommer J, Gerbracht KM, Krause FF, et al. OXA-484, an OXA-48-type carbapenem-hydrolyzing class D β-lactamase from Escherichia coli[J]. Front Microbiol, 2021, 12: 660094. doi: 10.3389/fmicb.2021.660094 [14] Pitout JDD, Peirano G, Kock MM, et al. The global ascen-dency of OXA-48-type carbapenemases[J]. Clin Microbiol Rev, 2019, 33(1): e00102-19. [15] Wang YH, Wang J, Wang R, et al. Resistance to ceftazidime-avibactam and underlying mechanisms[J]. J Glob Antimicrob Resist, 2020, 22: 18-27. doi: 10.1016/j.jgar.2019.12.009 [16] Tumbarello M, Trecarichi EM, Corona A, et al. Efficacy of ceftazidime-avibactam salvage therapy in patients with infections caused by Klebsiella pneumoniae carbapenemase-producing K. pneumoniae[J]. Clin Infect Dis, 2019, 68(3): 355-364. doi: 10.1093/cid/ciy492 [17] 胡付品, 郭燕, 朱德妹, 等. 2021年CHINET中国细菌耐药监测[J]. 中国感染与化疗杂志, 2022, 22(5): 521-530. https://www.cnki.com.cn/Article/CJFDTOTAL-KGHL202205001.htm Hu FP, Guo Y, Zhu DM, et al. CHINET surveillance of antimicrobial resistance among the bacterial isolates in 2021[J]. Chinese Journal of Infection and Chemotherapy, 2022, 22(5): 521-530. https://www.cnki.com.cn/Article/CJFDTOTAL-KGHL202205001.htm [18] Wang N, Zhan MH, Wang T, et al. Long term characteristics of clinical distribution and resistance trends of carbapenem-resistant and extended-spectrum β-lactamase Klebsiella pneumoniae infections: 2014-2022[J]. Infect Drug Resist, 2023, 16: 1279-1295. doi: 10.2147/IDR.S401807 [19] Zhang P, Shi Q, Hu H, et al. Emergence of ceftazidime/avibactam resistance in carbapenem-resistant Klebsiella pneumoniae in China[J]. Clin Microbiol Infect, 2020, 26(1): 124. e1-124. e4. doi: 10.1016/j.cmi.2019.08.020 [20] Qin XH, Wu S, Hao M, et al. The colonization of carbape-nem-resistant Klebsiella pneumoniae: epidemiology, resistance mechanisms, and risk factors in patients admitted to intensive care units in China[J]. J Infect Dis, 2020, 221(Suppl 2): S206-S214. [21] Anderson PL, Liu AY, Castillo-Mancilla JR, et al. Intracellular tenofovir-diphosphate and emtricitabine-triphosphate in dried blood spots following directly observed therapy[J]. Antimicrob Agents Chemother, 2017, 62(1): e01710-17. [22] Liao QF, Deng J, Feng Y, et al. Emergence of ceftazidime-avibactam resistance due to a novel blaKPC-2 mutation during treatment of carbapenem-resistant Klebsiella pneumoniae infections[J]. J Infect Public Health, 2022, 15(5): 545-549. doi: 10.1016/j.jiph.2022.04.002 [23] Sato T, Ito A, Ishioka Y, et al. Escherichia coli strains possessing a four amino acid YRIN insertion in PBP3 identified as part of the SIDERO-WT-2014 surveillance study[J]. JAC Antimicrob Resist, 2020, 2(3): dlaa081. doi: 10.1093/jacamr/dlaa081 [24] Haidar G, Clancy CJ, Shields RK, et al. Mutations in blaKPC-3 that confer ceftazidime-avibactam resistance encode novel KPC-3 variants that function as extended-spectrum β-lactama-ses[J]. Antimicrob Agents Chemother, 2017, 61(5): e02534-16. [25] Xiong LY, Wang XT, Wang Y, et al. Molecular mechanisms underlying bacterial resistance to ceftazidime/avibactam[J]. WIREs Mech Dis, 2022, 14(6): e1571. doi: 10.1002/wsbm.1571 [26] Hemarajata P, Humphries RM. Ceftazidime/avibactam resis-tance associated with L169P mutation in the omega loop of KPC-2[J]. J Antimicrob Chemother, 2019, 74(5): 1241-1243. doi: 10.1093/jac/dkz026 [27] Moreira NK, Caierão J. Ceftazidime-avibactam: are we safe from class A carbapenemase producers' infections?[J]. Folia Microbiol (Praha), 2021, 66(6): 879-896. doi: 10.1007/s12223-021-00918-5 [28] Livermore DM, Mushtaq S, Doumith M, et al. Selection of mutants with resistance or diminished susceptibility to ceftazidime/avibactam from ESBL-and AmpC-producing Entero-bacteriaceae[J]. J Antimicrob Chemother, 2018, 73(12): 3336-3345. [29] Hamzaoui Z, Ocampo-Sosa A, Fernandez Martinez M, et al. Role of association of OmpK35 and OmpK36 alteration and blaESBL and/or blaAmpC genes in conferring carbapenem resis-tance among non-carbapenemase-producing Klebsiella pneumoniae[J]. Int J Antimicrob Agents, 2018, 52(6): 898-905. doi: 10.1016/j.ijantimicag.2018.03.020 [30] Hamzaoui Z, Ocampo-Sosa A, Maamar E, et al. An outbreak of NDM-1-producing Klebsiella pneumoniae, associated with OmpK35 and OmpK36 porin loss in Tunisia[J]. Microb Drug Resist, 2018, 24(8): 1137-1147. doi: 10.1089/mdr.2017.0165 [31] Shen Z, Ding BX, Ye MP, et al. High ceftazidime hydrolysis activity and porin OmpK35 deficiency contribute to the decreased susceptibility to ceftazidime/avibactam in KPC-producing Klebsiella pneumoniae[J]. J Antimicrob Chemother, 2017, 72(7): 1930-1936. doi: 10.1093/jac/dkx066 [32] Nelson K, Hemarajata P, Sun DX, et al. Resistance to ceftazi-dime-avibactam is due to transposition of KPC in a porin-deficient strain of Klebsiella pneumoniae with increased efflux activity[J]. Antimicrob Agents Chemother, 2017, 61(10): e00989-17. [33] Luterbach CL, Qiu HQ, Hanafin PO, et al. A systems-based analysis of mono- and combination therapy for carbapenem-resistant Klebsiella pneumoniae bloodstream infections[J]. Antimicrob Agents Chemother, 2022, 66(10): e0059122. [34] Wei J, Zou CH, Wang DQ, et al. Genetic diversity and in vitro activity of ceftazidime/avibactam and aztreonam/avibactam against imipenem-resistant Enterobacteriaceae isolates in Southwest China: a single-centre study[J]. J Glob Antimicrob Resist, 2020, 22: 448-451. doi: 10.1016/j.jgar.2020.04.023 [35] Zhang F, Zhong JB, Ding HD, et al. Efficacy of ceftazidime-avibactam in the treatment of carbapenem-resistant Klebsiella pneumoniae infection after kidney transplantation[J]. Infect Drug Resist, 2021, 14: 5165-5174. doi: 10.2147/IDR.S343505 [36] Tichy E, Torres A, Bassetti M, et al. Cost-effectiveness comparison of ceftazidime/avibactam versus meropenem in the empirical treatment of hospital-acquired pneumonia, including ventilator-associated pneumonia, in Italy[J]. Clin Ther, 2020, 42(5): 802-817. doi: 10.1016/j.clinthera.2020.03.014 [37] Torres A, Rank D, Melnick D, et al. Randomized trial of ceftazidime-avibactam vs meropenem for treatment of hospital-acquired and ventilator-associated bacterial pneumonia (REPROVE): analyses per US FDA-specified end points[J]. Open Forum Infect Dis, 2019, 6(4): ofz149. [38] Gu J, Xu J, Zuo TT, et al. Ceftazidime-avibactam in the treatment of infections from carbapenem-resistant Klebsiella pneumoniae: ceftazidime-avibactam against CRKP infections[J]. J Glob Antimicrob Resist, 2021, 26: 20-25. doi: 10.1016/j.jgar.2021.04.022 [39] Zheng GH, Cai JQ, Zhang L, et al. Ceftazidime/avibactam-based versus polymyxin B-based therapeutic regimens for the treatment of carbapenem-resistant Klebsiella pneumoniae infection in critically ill patients: a retrospective cohort study[J]. Infect Dis Ther, 2022, 11(5): 1917-1934. doi: 10.1007/s40121-022-00682-0 [40] Torres A, Zhong NS, Pachl J, et al. Ceftazidime-avibactam versus meropenem in nosocomial pneumonia, including ventilator-associated pneumonia (REPROVE): a randomised, dou-ble-blind, phase 3 non-inferiority trial[J]. Lancet Infect Dis, 2018, 18(3): 285-295. doi: 10.1016/S1473-3099(17)30747-8 [41] Shi Y, Hu J, Liu PB, et al. Ceftazidime-avibactam-based versus tigecycline-based regimen for the treatment of carbapenem-resistant Klebsiella pneumoniae-induced pneumonia in critica-lly ill patients[J]. Infect Dis Ther, 2021, 10(4): 2721-2734. doi: 10.1007/s40121-021-00542-3 [42] van Duin D, Lok JJ, Earley M, et al. Colistin versus ceftazidime-avibactam in the treatment of infections due to carbape-nem-resistant Enterobacteriaceae[J]. Clin Infect Dis, 2018, 66(2): 163-171. doi: 10.1093/cid/cix783 [43] Cani E, Moussavi F, Ocheretyaner E, et al. Carbapenem-resistant Klebsiella pneumoniae vertebral osteomyelitis in a renal transplant recipient treated with ceftazidime-avibactam[J]. Transpl Infect Dis, 2018, 20(2): e12837. [44] Feldman S, Russo A, Ceccarelli G, et al. Ceftazidime-avibactam for the treatment of carbapenem-resistant Klebsiella pneumoniae infections in patients with liver cirrhosis[J]. J Clin Exp Hepatol, 2022, 12(5): 1293-1300. doi: 10.1016/j.jceh.2022.04.016 [45] Allaire M, Cadranel JF, Nguyen TTN, et al. Management of infections in patients with cirrhosis in the context of increasing therapeutic resistance: a systematic review[J]. Clin Res He-patol Gastroenterol, 2020, 44(3): 264-274. doi: 10.1016/j.clinre.2019.10.003 [46] Han RY, Teng MM, Zhang Y, et al. Choosing optimal antibio-tics for the treatment of patients infected with Enterobacteria-ceae: a network Meta-analysis and cost-effectiveness analysis[J]. Front Pharmacol, 2021, 12: 656790. doi: 10.3389/fphar.2021.656790 [47] Bradley JS, Roilides E, Broadhurst H, et al. Safety and efficacy of ceftazidime-avibactam in the treatment of children ≥3 months to < 18 years with complicated urinary tract infection: results from a phase 2 randomized, controlled trial[J]. Pediatr Infect Dis J, 2019, 38(9): 920-928. doi: 10.1097/INF.0000000000002395 [48] Xiao S, Fu QW, Miao YH, et al. Clinical efficacy and drug resistance of ceftazidime-avibactam in the treatment of carbape-nem-resistant Gram-negative bacilli infection[J]. Front Microbiol, 2023, 14: 1198926. doi: 10.3389/fmicb.2023.1198926 [49] Lin QX, Zou H, Chen X, et al. Avibactam potentiated the activity of both ceftazidime and aztreonam against S. maltophi-lia clinical isolates in vitro[J]. BMC Microbiol, 2021, 21(1): 60. doi: 10.1186/s12866-021-02108-2 [50] Papadimitriou-Olivgeris M, Bartzavali C, Lambropoulou A, et al. Reversal of carbapenemase-producing Klebsiella pneumo-niae epidemiology from blaKPC- to blaVIM-harbouring isolates in a Greek ICU after introduction of ceftazidime/avibactam[J]. J Antimicrob Chemother, 2019, 74(7): 2051-2054. doi: 10.1093/jac/dkz125